Posts

Showing posts from November, 2020

Hypothermia

Image
Hypothermia is defined as a body core temperature below 35.0 °C (95.0 °F) in humans. Symptoms depend on the temperature. In mild hypothermia, there is shivering and mental confusion. In moderate hypothermia, shivering stops and confusion increases. In severe hypothermia, there may be paradoxical undressing, in which a person removes their clothing, as well as an increased risk of the heart stopping. Hypothermia has two main types of causes. It classically occurs from exposure to extreme cold. It may also occur from any condition that decreases heat production or increases heat loss. Commonly this includes alcohol intoxication but may also include low blood sugar, anorexia, and advanced age. Body temperature is usually maintained near a constant level of 36.5–37.5 °C (97.7–99.5 °F) through thermoregulation. Efforts to increase body temperature involve shivering, increased voluntary activity, and putting on warmer clothing. Hypothermia may be diagnosed based on either a person's sy

Classification

Image
Hypothermia classification Swiss system Symptoms By degree Temperature Stage 1 Awake and shivering Mild 32–35 °C (89.6–95.0 °F) Stage 2 Drowsy and not shivering Moderate 28–32 °C (82.4–89.6 °F) Stage 3 Unconscious, not shivering Severe 20–28 °C (68.0–82.4 °F) Stage 4 No vital signs Profound <20 °C (68.0 °F) Hypothermia is often defined as any body temperature below 35.0 °C (95.0 °F). With this method it is divided into degrees of severity based on the core temperature. Another classification system, the Swiss staging system, divides hypothermia based on the presenting symptoms which is preferred when it is not possible to determine an accurate core temperature. Other cold-related injuries that can be present either alone or in combination with hypothermia include: Chilblains: condition caused by repeated exposure of skin to temperatures just above freezing. The cold causes damage to small blood vessels in the skin. This damage is permanent and the redness

Signs and symptoms

Image
Signs and symptoms vary depending on the degree of hypothermia, and may be divided by the three stages of severity. Infants with hypothermia may feel cold when touched, with bright red skin and an unusual lack of energy. Mild Symptoms of mild hypothermia may be vague, with sympathetic nervous system excitation (shivering, high blood pressure, fast heart rate, fast respiratory rate, and contraction of blood vessels). These are all physiological responses to preserve heat. Increased urine production due to cold, mental confusion, and liver dysfunction may also be present. Hyperglycemia may be present, as glucose consumption by cells and insulin secretion both decrease, and tissue sensitivity to insulin may be blunted. Sympathetic activation also releases glucose from the liver. In many cases, however, especially in people with alcoholic intoxication, hypoglycemia appears to be a more common cause. Hypoglycemia is also found in many people with hypothermia, as hypothermia may be a result

Causes

Image
Hypothermia usually occurs from exposure to low temperatures, and is frequently complicated by alcohol consumption. Any condition that decreases heat production, increases heat loss, or impairs thermoregulation, however, may contribute. Thus, hypothermia risk factors include: substance abuse (including alcohol abuse), homelessness, any condition that affects judgment (such as hypoglycemia), the extremes of age, poor clothing, chronic medical conditions (such as hypothyroidism and sepsis), and living in a cold environment. Hypothermia occurs frequently in major trauma, and is also observed in severe cases of anorexia nervosa. Hypothermia is also associated with worse outcomes in people with sepsis. While most people with sepsis develop fevers (elevated body temperature), some develop hypothermia. In urban areas, hypothermia frequently occurs with chronic cold exposure, such as in cases of homelessness, as well as with immersion accidents involving drugs, alcohol or mental illness. While

Pathophysiology

Image
Temperature classification Core (rectal, esophageal, etc.) Hypothermia <35.0 °C (95.0 °F) Normal 36.5–37.5 °C (97.7–99.5 °F) Fever >37.5 or 38.3 °C (99.5 or 100.9 °F) Hyperthermia >37.5 or 38.3 °C (99.5 or 100.9 °F) Hyperpyrexia >40.0 or 41.0 °C (104.0 or 105.8 °F) Note: The difference between fever and hyperthermia is the underlying mechanism. Different sources have different cut-offs for fever, hyperthermia and hyperpyrexia. v t e Heat is primarily generated in muscle tissue, including the heart, and in the liver, while it is lost through the skin (90%) and lungs (10%). Heat production may be increased two- to four-fold through muscle contractions (i.e. exercise and shivering). The rate of heat loss is determined, as with any object, by convection, conduction, and radiation. The rates of these can be affected by body mass index, body surface area to volume ratios, clothing and other environmental conditions. Many changes to physiology occur as body tempera

Diagnosis

Image
Accurate determination of core temperature often requires a special low temperature thermometer, as most clinical thermometers do not measure accurately below 34.4 °C (93.9 °F). A low temperature thermometer can be placed in the rectum, esophagus or bladder. Esophageal measurements are the most accurate and are recommended once a person is intubated. Other methods of measurement such as in the mouth, under the arm, or using an infrared ear thermometer are often not accurate. As a hypothermic person's heart rate may be very slow, prolonged feeling for a pulse could be required before detecting. In 2005, the American Heart Association recommended at least 30–45 seconds to verify the absence of a pulse before initiating CPR. Others recommend a 60-second check. The classical ECG finding of hypothermia is the Osborn J wave. Also, ventricular fibrillation frequently occurs below 28 °C (82 °F) and asystole below 20 °C (68 °F). The Osborn J may look very similar to those of an acute ST e

Prevention

Image
Appropriate clothing helps to prevent hypothermia. Synthetic and wool fabrics are superior to cotton as they provide better insulation when wet and dry. Some synthetic fabrics, such as polypropylene and polyester, are used in clothing designed to wick perspiration away from the body, such as liner socks and moisture-wicking undergarments. Clothing should be loose fitting, as tight clothing reduces the circulation of warm blood. In planning outdoor activity, prepare appropriately for possible cold weather. Those who drink alcohol before or during outdoor activity should ensure at least one sober person is present responsible for safety. Covering the head is effective, but no more effective than covering any other part of the body. While common folklore says that people lose most of their heat through their heads, heat loss from the head is no more significant than that from other uncovered parts of the body. However, heat loss from the head is significant in infants, whose head is large

Management

Image
Degree Rewarming technique Mild (stage 1) Passive rewarming Moderate (stage 2) Active external rewarming Severe (stage 3 and 4) Active internal rewarming Aggressiveness of treatment is matched to the degree of hypothermia. Treatment ranges from noninvasive, passive external warming to active external rewarming, to active core rewarming. In severe cases resuscitation begins with simultaneous removal from the cold environment and management of the airway, breathing, and circulation. Rapid rewarming is then commenced. Moving the person as little and as gently as possible is recommended as aggressive handling may increase risks of a dysrhythmia. Hypoglycemia is a frequent complication and needs to be tested for and treated. Intravenous thiamine and glucose is often recommended, as many causes of hypothermia are complicated by Wernicke's encephalopathy. The UK National Health Service advises against putting a person in a hot bath, massaging their arms and legs, using a heati

Prognosis

Image
It is usually recommended not to declare a person dead until their body is warmed to a near normal body temperature of greater than 32 °C (90 °F), since extreme hypothermia can suppress heart and brain function. Exceptions include if there are obvious fatal injuries or the chest is frozen so that it cannot be compressed. If a person was buried in an avalanche for more than 35 minutes and is found with a mouth packed full of snow without a pulse, stopping early may also be reasonable. This is also the case if a person's blood potassium is greater than 12 mmol/l. Those who are stiff with pupils that do not move may survive if treated aggressively. Survival with good function also occasionally occurs even after the need for hours of CPR. Children who have near-drowning accidents in water near 0 °C (32 °F) can occasionally be revived, even over an hour after losing consciousness. The cold water lowers the metabolism, allowing the brain to withstand a much longer period of hypoxia. Whi

Epidemiology

Image
Between 1995 and 2004 in the United States, an average of 1560 cold-related emergency department visits occurred per year and in the years 1999 to 2004, an average of 647 people died per year due to hypothermia. Of deaths reported between 1999 and 2002 in the US, 49% of those affected were 65 years or older and two-thirds were male. Most deaths were not work related (63%) and 23% of affected people were at home. Hypothermia was most common during the autumn and winter months of October through March. In the United Kingdom, an estimated 300 deaths per year are due to hypothermia, whereas the annual incidence of hypothermia-related deaths in Canada is 8000.

History

Image
Hypothermia has played a major role in the success or failure of many military campaigns, from Hannibal's loss of nearly half his men in the Second Punic War (218 B.C.) to the near destruction of Napoleon's armies in Russia in 1812. Men wandered around confused by hypothermia, some lost consciousness and died, others shivered, later developed torpor, and tended to sleep. Others too weak to walk fell on their knees; some stayed that way for some time resisting death. The pulse of some was weak and hard to detect; others groaned; yet others had eyes open and wild with quiet delirium. Loss of life to hypothermia in Russian regions continued through the first and second world wars, especially in the Battle of Stalingrad. Civilian examples of deaths caused by hypothermia occurred during the sinkings of the RMS Titanic and RMS Lusitania , and more recently of the MS Estonia . Antarctic explorers developed hypothermia; Ernest Shackleton and his team measured body temperatures &quo

Medical use

Various degrees of hypothermia may be deliberately induced in medicine for purposes of treatment of brain injury, or lowering metabolism so that total brain ischemia can be tolerated for a short time. Deep hypothermic circulatory arrest is a medical technique in which the brain is cooled as low as 10 °C, which allows the heart to be stopped and blood pressure to be lowered to zero, for the treatment of aneurysms and other circulatory problems that do not tolerate arterial pressure or blood flow. The time limit for this technique, as also for accidental arrest in ice water (which internal temperatures may drop to as low as 15 °C), is about one hour.

Other animals

Many animals other than humans often induce hypothermia during hibernation or torpor. Water bears (Tardigrade), microscopic multicellular organisms, can survive freezing at low temperatures by replacing most of their internal water with the sugar trehalose, preventing the crystallization that otherwise damages cell membranes.